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Abstract

For thin metal sheets subject to stretching under various in-plane tensile stress histories, localized necking is
analyzed by using the M±K-model approach, and forming limit diagrams are drawn based on the critical strains for

localization. The analyses account for plastic anisotropy, and predictions are shown based on four di�erent
anisotropic plasticity models, which have all been ®tted to agree with the same set of experimental data. Situations
where the tensile axis is along one of the orthotropic axes of the anisotropy are studied, as well as situations where

the tensile axis is inclined to the orthotropic axes. Furthermore, the e�ect of allowing for nonzero shear strains
outside the necking band is considered. In all analyses the rotation of the orthotropic axes is accounted for, and a
few studies are used to evaluate the e�ect of assuming the development of a plastic spin. 7 2000 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

For thin metal sheets subject to in-plane stretching the occurrence of a tensile instability, leading to
localized necking in the sheet, is one of the most frequently observed failure mechanisms. In industrial
sheet metal forming operations such localized necking is known to be an important limitation on sheet
metal formability (Keeler, 1968). In practice, so called forming limit diagrams for a given sheet metal
are used to plot the critical strain for localization, corresponding to a range of di�erent stress or strain
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histories. There has been much interest in the development of theoretical methods for the prediction of
forming limit diagrams.

For an initially uniform sheet described by classical isotropic hardening rigid-plastic theory with a
smooth yield surface and normality, Hill (1952) found bifurcation into a localized necking mode,
provided that the principal strain increments in the plane of the sheet are of opposite sign. However, no
such bifurcations were predicted in the important range, where both principal strain increments are
positive. For this range, Marciniak and Kuczynski (1967) have shown by a simple plane stress analysis,
often called the M±K-model, that localized necking is predicted if an initial thickness inhomogeneity is
assumed in the sheet. This is signi®cant, as inhomogeneities of either thickness or material properties are
unavoidable in practice. As an alternative approach, Stùren and Rice (1975) assume that a vertex forms
on the yield surface and show that for a uniform sheet this leads to bifurcation predictions at realistic
strain levels, in the whole range of strain ratios. A noteworthy general feature of these plane-stress
analyses for sheet necking is the analogy with the standard formulation used to analyze shear band
instabilities in three-dimensional (3D) solids (e.g. see Ref. Tvergaard, 1989). For the uniform 3D
problem, the ®rst critical bifurcation into a shear band coincides with loss of ellipticity of the governing
di�erential equations, while in the 2D sheet-necking problem bifurcation corresponds to loss of
ellipticity of the plane stress equations.

Forming limit predictions are very sensitive to the constitutive model assumed, as was already shown
by Stùren and Rice (1975). Subsequently, Tvergaard (1978, 1980) has used a kinematic hardening model
to show that the critical strain is very sensitive to the local curvature of the yield surface at the point of
loading, if the sheet contains an initial imperfection. Also early studies of the e�ect of anisotropic
plasticity in metal sheets (Parmar and Mellor, 1978; Bassani et al., 1979) have demonstrated a strong
sensitivity to small changes of parameters determining the yield surface shape. More recently, Barlat
(1987), Barlat and Richmond (1987) and Barlat and Lian (1989) have developed anisotropic yield
surfaces representing various crystallographic textures, and such yield surfaces have been used in sheet
necking analyses (e.g. Lian et al., 1989a). Also, Lian et al. (1989b), Xu and Weinmann (1998) have used,
respectively, the anisotropic yield criteria of Hill (1979, 1993) only in the range where both principal
strains are positive. An alternative approach to the study of plastic anisotropy e�ects on predictions of
¯ow localization relies on the direct use of an elastic-viscoplastic Taylor-type polycrystal model to
represent initial textures as well as texture development during deformation (Asaro and Needleman,
1985; Tvergaard and Needleman, 1993). Recently, this approach has been used by Wu et al. (1997,
1998) in a number of detailed sheet necking analyses for rolled aluminum alloy sheets.

In analyzing sheet metal formability it is important to realize that the critical strain for localization is
highly path dependent. Most analyses based on the M±K-model, including all those mentioned above,
have assumed a ®xed ratio of the in-plane principal logarithmic strains during the deformation leading
to each point on the forming limit curve. But M±K- model analyses using nonproportional strain paths
prior to localization show that the critical strain at localization can be much increased or much reduced
by choosing di�erent nonproportional strain paths in the pre-localization deformation (e.g. see Ref.
Needleman and Tvergaard, 1984). In real sheet metal forming operations complex geometries or
drawing sequences can result in signi®cant deviations from proportional straining, which a�ect the onset
of localization.

The onset of localized necking in anisotropic metal sheets is analyzed in the present paper. Four
di�erent anisotropic plasticity models are used, i.e. the models suggested by Hill (1948, 1990), Barlat
and Lian (1989) and Gotoh (1977). For all four models the yield surfaces and hardening behavior are
®tted to agree with experimental results of Kuwabara et al. (1998a) for a cold-rolled steel sheet. The
basic formulations for the rotation of the yield surface during deformation make use of models
developed by Dafalias (1985, 1993) and Kuroda (1997). In all previous analyses of necking in
anisotropic metal sheets, the principal tensile axes have been along the orthotropic axes of the
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anisotropy, but here we focus also on tension in directions inclined to the initial orthotropic axes, so
that a description of the rotation of the orthotropic axes with deformation is a necessary part of the
analysis. In the localization studies two di�erent sets of boundary conditions on the deformations
outside the band are considered, which are both natural extensions of the standard boundary conditions
used in M-K-model analyses.

2. Anisotropic plasticity models

2.1. Generalities

A framework of constitutive equations considered here is based on the one generalized by Dafalias
(1985, 1993). Assuming a small elastic and ®nite plastic deformation, we can write the kinematics in the
rate form,

D � De � Dp � De � hliNp �1�

W � ooo�Wp � ooo� hliOOOp �2�
where D is the rate of deformation tensor (symmetric part of the velocity gradient tensor L �
@vi=@xjei 
 ej, where v is the velocity of a material particle, x is the current position and ei the
Cartesian basis), W is the continuum spin tensor (antisymmetric part of L), the superscripts e and p
denote the elastic and plastic parts, ooo is the spin of material substructure, and Np and OOOp de®ne the
direction of Dp and Wp, respectively. The scalar-valued quantity l is a loading index which is
determined by a consistency condition of yield function, and h i are the Macauley brackets de®ning the
operation hli � l if l > 0 and hli � 0 if lR0:

The state variables will be the Cauchy stress sss and a set si of structure variables consisting of second-
order tensors ai (here we consider symmetric tensors only), vectors bi, and scalars ki: With the
superposed �8� denoting an objective rate with respect to the substructure spin ooo, the evolution laws for
state variables are assumed to be given by,

�sss � _sssÿ ooosss� sssooo � C:De � C:Dÿ hliC:Np �3�

Êsi � hliÅsi�sss, si�; �4a�

Êai � Çai ÿ oooai � aiooo � hliÅai �4b�

Êbi � Çbi ÿ ooobi � hli Åbi �4c�

�k � _k � hli �k �4d�
where C is a fourth order elastic moduli tensor. Eq. (1) has been used for the last expression of Eq. (3).
If a structure variable does not have any contribution to plastic hardening, such as a purely
orientational quantity indicating an anisotropic direction, we consider Åai � 0 or Åbi � 0 regardless of the
value of hli:

The equation of a yield surface is de®ned by
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f�sss, si � � 0 �5�

where f is an isotropic function of sss and si: The consistency condition for continuing plastic
deformation is

_f � @f

@sss
: _sss� @f

@si
:Çsi � @f

@sss
: �sss� @f

@si
:Êsi � 0: �6�

With the notation Nn � @f=@sss, we obtain the relations for l, using Eqs. (3) and (4a), as follows:

l � Nn: �s
H0
� Nn:C:D

H0 � Nn:C:Np ; H0 � ÿ @ f
@si

:�si �7a,b�

Substituting the last expression of Eq. (7a) into (3), an elasto-plastic constitutive relation between �s and
D is derived as

�sss �
�

Cÿ �C:Np� 
 �Nn:C�
H0 � Nn:C:Np

�
:D �8�

Further, using Eq. (2), we can derive an expression for the constitutive relation in terms of the Jaumann
stress rate, �sssJ� _sssÿWsss� sssW, as follows,

�sssJ �
"

Cÿ
�
C:Np ÿ �sssOOOp ÿ OOOpsss�

	

 �Nn:C�

H0 � Nn:C:Np

#
:D � ÅC:D �9�

In this study, only an isotropic and constant C is considered, which is determined by the Young's
modulus E and the Poisson's ratio n:

Since Dafalias (1983, 1985) ®rst proposed a general formulation for the plastic spin, it has been
actively applied to various types of plasticity models and problems so far. In the present investigation,
the skew tensor OOOp in Eq. (2) is assumed to be given by

OOOp � b�sssNp ÿ Npsss�; b � q

seq
�10�

where q is a plastic spin coe�cient and seq is a properly de®ned equivalent stress. In the previous study
(Kuroda, 1997), it has been shown that Eq. (10) provides fairly reasonable predictions of change in
orientation of anisotropy for large reversed shear deformations. Very recently, Dafalias (1998, 1999) has
pointed out that Eq. (10) can also reproduce experimental observations for the orientational evolution
of anisotropy during tensile deformations (Kim and Yin, 1997), according to a choice of values of the
plastic spin coe�cient. It is noted that Eq. (10) is interpreted as a particular case of a plastic spin
formulation method based on weighted `average' of structure variables including the stress s, which was
provided in the earlier paper of Dafalias (1983). In Ref. Dafalias (1998) it has been also mentioned that
the plastic spin formulation, which is based on the direct use of the representation theorem for each
structure variable, i.e. OOOp� Z1�a1sssÿsssa1�� Z2�a2sssÿ sssa2�� Z3�a1sssa2ÿ a2sssa1� with a1 � n1 
 n1 and a2 �
n2 
 n2 (Dafalias, 1983, 1985; Dafalias and Rashid, 1989), hardly reproduces the aforementioned
experimental observations for orientational evolution of anisotropy. Lee et al. (1995) investigated the
e�ects of plastic spin on strain localization in orthotropic material represented by Hill's (1948) quadratic
yield criterion. Since their plastic spin formulation corresponds to the latter one, their results cannot be
directly compared with the results to be shown in the present paper.
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2.2. Anisotropic plasticity with orthotropic symmetries

Our discussion is restricted to the anisotropy with orthotropic symmetries, and we consider four
orthotropic yield functions: Hill's 1948 quadratic (Hill, 1948), Hill's 1990 non-integer powers (Hill,
1990), Barlat and Lian's arbitrary powers (Barlat and Lian, 1989) and Gotoh's biquadratic (Gotoh,
1977). The latter three yield functions were proposed for in-plane stress (sheet) analysis only.

We state ®rst some common assumptions that will be introduced into the analyses. Throughout the
present investigation, an associated ¯ow rule, Np�Nn� @f=@sss, is adopted. The current orthotropic axes
are speci®ed by the orthonormal basis ni: The ni are purely orientational quantities, so that we can set
Êni � 0 and then we have the following equation for orientational evolution of orthotropy:

Çni � oooni: �11�
Eq. (11) corresponds to the general expression (4c).

The tensor components in reference to the orthonormal axes x̂i (i.e. ni� are denoted by the superposed
(^), e.g. sss� sijei 
 ej� ŝijni 
 nj, Np�N

p
ijei 
 ej� N̂

p

ijni 
 nj, etc., where ei are the ®xed Cartesian basis.
Accordingly, we can calculate the components @ f=@sij in reference to the ®xed Cartesian coordinate
system as

@ f

@sij
� @f

@ ŝkl

@ ŝkl
@sij

: �12�

The rolling direction `R.D.', transverse direction `T.D.' and normal (thickness) direction `N.D.' are
chosen to coincide initially with the axes x̂1, x̂2 and x̂3, respectively. The uniaxial yield (or ¯ow) stress in
a tensile specimen for a8 to R.D. is denoted by sa: for instance, s0, s45, etc., and their initial values are
denoted by sI

a: The values of sa 's are assumed to be governed by a power-law function of an equivalent
plastic strain ep as

sa � sI
a�1�

ep

e0
�n �13�

where n is the strain hardening exponent, and e0 is a material constant. In addition to sa's, we de®ne sbi

the yield stress in equibiaxial tension: i.e. ŝ11 � ŝ22 � sbi for continuing plastic deformation under the
equibiaxial tension, which is also governed by the same power-law function as Eq. (13). The r-values
(the ratio of width to thickness strain rates) for the a direction are denoted by ra: The ra's are assumed
to be constants throughout the present paper. Validity of this assumption will be discussed in Section 4.
The orthotropic axis x̂3 is identical to the axis x3 of the ®xed Cartesian coordinate system throughout
the analysis because a plane stress state is assumed, while the axes x̂1 and x̂2 may rotate relative to x1

and x2, according to Eq. (11). It is assumed that the material properties characterized by sa, sbi and ra,
which are determined in reference to the initial state of x̂1 and x̂2 (= R.D. and T.D., respectively), will
be maintained for any rotated state of the x̂1 and x̂2 axes: i.e. the rotation of orthotropic axes does not
a�ect the material properties observed on the orthotropic axes x̂i:

The rate of the equivalent plastic strain is de®ned simply by

_ep �
����������������
2

3
Dp:Dp

r
� hli

����������������
2

3
Np:Np

r
, �14�

and the total equivalent strain is obtained from ep� � _ep dt: The last expression in Eq. (14) corresponds
to the general expression (4d). It is noted that the use of the uni®ed de®nition for _ep in Eq. (14) implies
that we adopt here a simple `strain-hardening' assumption, and do not use the `work-hardening'
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assumption based on an equivalency sss:Dp � ssseq_ep: Advantages, as well as disadvantages, in both the
assumptions of work-hardening and strain-hardening are still at issue.

2.2.1. Hill's (1948) quadratic
The most classical and familiar anisotropic yield criterion proposed by Hill (1948) is

f �
�����������������������������

3

2�F� G�H�

s h
�G�H�ŝ2

11 ÿ 2Hŝ11ŝ22 � �F�H�ŝ2
22 � 2Nŝ2

12

i1=2
ÿCs0 � 0 �15�

C �
�����������������������������

3�G�H�
2�F� G�H�

s
�16�

where F, G, H and N are orthotropic coe�cients which are determined by

G

H
� 1

r0
;

F

H
� 1

r90
;

N

H
�
�
r45 � 1

2

��
1

r0
� 1

r90

�
�17�

in a commonly used way. The orthotropic coe�cients, of course, can be also determined with yield
(¯ow) stresses obtained from uniaxial and equibiaxial tensile tests. Discussion of methods for
determining the coe�cients will be provided later. If we assume F � G � H and N � 3F, Eq. (15) is
reduced to the Mises criterion. The hardening modulus in the constitutive relation (8) or (9) is

H0 � C
ds0
dep

����������������
2

3
Np:Np

r
: �18�

2.2.2. Hill's (1990) non-integer powers
Hill (1990) proposed the following yield criterion as an improvement of his 1948 quadratic one:

f � 1

2

h
jŝ11 � ŝ22jm �

ÿ
smbi=t

m
�j�ŝ11 ÿ ŝ22 �2�4ŝ2

12jm=2 � jŝ2
11 � ŝ2

22 � 2ŝ2
12jm=2ÿ1

n
ÿ 2a

�
ŝ2
11 ÿ ŝ2

22

�
� b�ŝ11 ÿ ŝ22 �2

oi1=m
ÿsbi

� 0 �19�

smbi=t
m � �2sbi=s45 �mÿ1 �20�

a � 1

4

��2sbi=s90 �mÿ�2sbi=s0�m
	 �21�

b � 1

2

��2sbi=s0�m��2sbi=s90 �m
	ÿ �2sbi=s45 �m �22�

where m > 1: When sbi � s0 � s45 � s90 with m � 2, Eq. (19) is reduced to the Mises criterion. Based
on the above yield function and Eq. (7b), we obtain the strain hardening modulus as follows:
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H0 � ÿ @ f
@ep

����������������
2

3
Np:Np

r
�23�

where

@f

@ep
� @ f

@sbi

dsbi

dep
� @ f

@s0

ds0
dep
� @f

@s90

ds90
dep
� @f

@s45

ds45
dep

: �24�

2.2.3. Barlat and Lian's (1989) arbitrary powers
Motivated by earlier works by Hershey (1954), Hosford (1972), Hill (1979) and Logan and Hosford

(1980), Barlat and Lian (1989) proposed the following yield criterion:

f �
�
1

2

ÿ
ajK1 � K2jM � ajK1 ÿ K2jM � cj2K2jM

��1=M
ÿs0 � 0 �25�

K1 � ŝ11 � hŝ22
2

, K2 �
�����������������������������������������������
ŝ11 ÿ hŝ22

2

�2

�p2ŝ2
12

s
�26a,b�

where a, c, h and p are orthotropic coe�cients. If we assume that M is known, these coe�cients can be
determined with yield (¯ow) stresses obtained from uniaxial and equibiaxial tensile tests or r-values data.
Although Barlat and Lian (1989) mainly considered to use the r-values data, we use here the tensile test
data as in Hill's (1990) criterion, i.e.

a � 2ÿ c, c �
2
n
sMbi � �hsbi�M

o
ÿ 2sM0

sMbi � �hsbi�Mÿj�1ÿ h�sbijM
, h � s0

s90
: �27a,b,c�

The coe�cient p cannot be calculated analytically. However, after determining a, c and h, we can have a
nonlinear algebraic equation for p by substituting ŝ11 � ŝ22 � ŝ12 � 1

2s45 into Eq. (25). Using this
equation, the value of p can be found numerically. When sbi � s0 � s45 � s90, i.e. a � c � h � p � 1
with m � 2, Eq. (25) is reduced to the Mises criterion. We obtain the strain hardening modulus by Eq.
(23) with

@f

@ep
�
�
@f

@c
ÿ @f

@a

��
@c

@sbi

dsbi

dep
� @c

@s0

ds0
dep
� @c
@h

dh

dep

�
�
�
@ f

@K1

@K1

@h
� @ f

@K2

@K2

@h

�
dh

dep

� @ f

@K2

@K2

@p

dp

dep
ÿ ds0

dep
�28�

In the above equation, we cannot have analytical expression for dp=dep again. It is evaluated
numerically.

Barlat and his co-workers (Barlat et al., 1991; 1997) subsequently proposed more generalized yield
functions with six stress components, which could be potentially used for general three dimensional
problems (but, the application has been restricted to sheet materials only). The yield criterion of Barlat
et al. (1991) produced a plane stress yield surface that is very similar to the one predicted by Barlat and
Lian's (1989) criterion in Eq. (25) as shown in Ref. Barlat et al. (1991). The last proposal by Barlat et
al. (1997) includes Barlat and Lian's (1989) criterion (Eq. (25)) as a special case. In consideration of this,
we employ the simpler yield criterion of Eq. (25) in this paper.
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2.2.4. Gotoh's (1977) biquadratic
Motivated by Hill's suggestion (Hill, 1950), Gotoh (1977) proposed the following fourth order

(biquadratic) yield criterion:

f �
h
A1ŝ

4
11 � A2ŝ

3
11ŝ22 � A3ŝ

2
11ŝ

2
22 � A4ŝ11ŝ

3
22 � A5ŝ

4
22 �

�
A6ŝ

2
11 � A7ŝ11ŝ22 � A8ŝ

2
22

�
ŝ2
12

� A9ŝ
4
12

i1=4
ÿs0

� 0 �29�

where

A1 � 1, A2 � ÿ 4r0
1� r0

, A4 � ÿ 4A5r90
1� r90

, �30a,b,c�

A5 � �s0=s90 �4, A3 � �sbi=s0�ÿ4ÿ�A1 � A2 � A4 � A5� �30d,e�
and A60A9 are determined with r45, r22:5, s45 and s22:5, in addition to r0, r90, s0, s90 and sbi: The
detailed procedures for the determination of the remaining coe�cients are given by Gotoh (1977). If all
the sa 's, as well as sbi, are identical and all the ra 's are equal to 1.0, Eq. (29) reduces to the Mises
criterion. This isotropic condition is expressed in terms of the coe�cients A10A9 as A2 � A4 � ÿ2A1,
A3 � 3A1, A5 � A1, A6 � A8 � ÿA7 � 6A1 and A9 � 9A1 with A1 � 1: The strain hardening modulus is
given by

H0 � ÿ @ f
@ep

����������������
2

3
Np:Np

r
�
�

ds0
dep
ÿ @ f

@AI

dAI

dep

� ����������������
2

3
Np:Np

r
: �31�

2.2.5. Similarities and di�erences between the yield criteria
Special cases of the yield criteria, i.e. Hill's (1990) criterion with m � 2 and Barlat and Lian's (1989)

criterion with M � 2, are completely identical. Moreover, the functional form of these is the same as the
classical Hill's (1948) criterion. In this case, the di�erence of the above Hill's (1948) criterion to Hill's
(1990) criterion with m = 2 (or Barlat and Lian's (1989) with M = 2) is only the method used to
determine the orthotropic coe�cients. As shown above, in Hill's (1948) quadratic criterion, we use only
the r-value data. By contrast, in Hill's (1990) and Barlat and Lian's (1989) criteria, we use the yield
stresses in uniaxial and biaxial tensile tests. Therefore, through a comparison of results for Hill's (1948)
criterion to results for Hill's (1990) criterion with m = 2 (or Barlat and Lian's (1989) criterion with M
= 2), we can observe rather small di�erences, resulting from the di�erent methods for determining the
coe�cients. In the case of Gotoh's (1977) biquadratic, both the r-value data and yield (¯ow) stress data
are used to determine the coe�cients. In other words, Gotoh's (1977) biquadratic criterion accounts for
both the e�ects of deformation anisotropy (r-values) and deformation resistance anisotropy (tensile yield
stresses), although the power of stress in this yield criterion is ®xed to four.

3. Sheet necking formulation

For the thin sheets considered here, with two of the orthotropic axes, x̂1 and x̂2, of the anisotropy in
the plane of the sheet, in-plane stretching results in a plane stress state. Thus, with Greek letter
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subscripts ranging from 1 to 2, representing in-plane quantities, the components L23, L32, L31 and L13

are automatically zero. From the plane stress requirement of zero stresses normal to the sheet, i.e.
_s33 � 0, we obtain a relationship between L33�� D33� and the in-plane components Dab: Using this, D33

can be eliminated from the 3D constitutive relation (9) as

�sJ
ab �

"
�Cabgd ÿ

�Cab33 �C33gd

�C3333

#
Dgd: �32�

All the yield criteria considered here are written in terms of the stress components ŝ11, ŝ22 and ŝ12
(=ŝ21), as shown in the previous section. They give directly @ f=@s11, @f=@s22 and @f=@s12 with the use of
Eq. (12). The component @f=@s33 is obtained from the plastic incompressibility assumption. Using these,
we can calculate the components �Cijkl in Eq. (9) with respect to the ®xed Cartesian coordinate system.
Then, the components of the in-plane modulus are obtained from Eq. (32).

In the M±K-model it is assumed that a band of material contains an initial inhomogeneity, e.g. in the
form of a reduced thickness of the sheet (see Fig. 1). The quantities inside the band are denoted by � �b
and the initial normal of the band is mI��cos cI, sin cI�: Since uniform deformation ®elds are assumed
both inside and outside the band, equilibrium and compatibility inside these two regions are
automatically satis®ed, apart from the necessary conditions along the edge of the band. These conditions
are

F b
ab � Fab � dam

I
b �33�

mI
aP

b
abh

b
I � mI

aPPPabhI �34�

where Fab are the components of the deformation gradient, hI are the initial thicknesses, Pab are the
components of the nominal stress PPP, and da are parameters to be determined. Thus, in the absence of

Fig. 1. Anisotropic thin sheet with an initial thickness imperfection initially inclined at an angle cI:

M. Kuroda, V. Tvergaard / International Journal of Solids and Structures 37 (2000) 5037±5059 5045



material inhomogeneities, the initial imperfection is speci®ed by the ratio hb
I =hI: These equations

determine the neck development for any prescribed history of the in-plane deformation gradients Fab

outside the band. Plastic ¯ow localization is said to occur when straining stops outside the band (elastic
unloading), while plastic straining continues inside the band.

In the present study an Eulerian version of Eqs. (33) and (34) is used. Thus, the compatibility
condition at the band interface is given in terms of the di�erences between the velocity gradients inside
and outside the band,

Lb
ab � Lab � _camb �35�

where _ca are the parameters to be determined, and mb are the components of the current unit normal m
to the band, which is given by m � �cos c, sin c� in terms of the current angle c of the band. The
Eulerian form of the equilibrium conditions at the band interface is

masb
abh

b � masabh: �36�

Substituting the constitutive relation (in the plane stress form (32)) into the rate form of Eq. (36), with
elimination of Lb

ab using Eq. (35), gives simple algebraic equations having only two unknowns, _c1 and
_c2: Once _c1 and _c2 are solved, we can calculate all the rate values of the variables to be updated.
For the deformations outside the band most M±K-analyses have assumed a constant ratio r of the

logarithmic strains along the ®xed Cartesian coordinate axes, with no shear straining. Then, the in-plane
normal components of the velocity gradient are prescribed as follows:

L22

L11
� D22

D11
� _e22

_e11
� r � constant: �37�

with the remaining components set to be

L12 � L21 � D12 �W21 � 0: �38�

In this case, the current orientation of the band, c, is simply given by

tan c � exp
��1ÿ r�e11

�
tan cI: �39�

In the case of standard isotropic hardening or kinematic hardening solids, the conditions (37) and (38)
will automatically result in zero shear stress, s12 � 0, outside the band. The same is true for anisotropic
plasticity if the orthotropic axes of the anisotropy are in the ®xed coordinate directions, i.e. if yI is set to
be 08 or 908, where yI is the initial orthotropic angle de®ned in Fig. 1. However, in many of the
anisotropic cases to be analyzed here yI di�ers from 08 or 908, and then the conditions (38) can result in
the development of nonzero values of s12 outside the band. For a few of these cases comparison will be
made with analyses where Eq. (38) is replaced by the conditions

L12 6�0, L21 � 0, s12 � 0: �40�

These alternative conditions mean that, outside the band, material lines initially parallel to the x1 axis
will not rotate, but lines initially parallel to the x2 axis may rotate, so that nonzero shear strains will
develop, while the shear stress remains zero. In this case, the current unit normal vector m of the band
can be obtained by the following more generalized way:
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m � 1���������������
s21 � s22

q �
s2
ÿs1

�
�41�

s1 � F11s
I
1 � F12s

I
2, s2 � F21s

I
1 � F22s

I
2 �42�

where sI
b are the components of the initial tangential vector sI of the band. Eq. (39) is, of course, a

special case of Eq. (41).
It is emphasized that, for the standard isotropic material, or for anisotropic materials with the

orthotropic axes along the ®xed coordinate axes, identical results are obtained by prescribing either the
conditions (37) and (38) or the conditions (37) and (40), outside the band.

For the case of hb
I =hI < 1, the onset of the sheet necking (localization), as de®ned above, is calculated

as the occurrence of a much higher maximum principal logarithmic strain rate inside the band than
outside the band, i.e. _eb

1 � _e1, where _eb
1 and _e1 are the maximum principal values of the stretching

tensors Db and D, respectively. For the case of hb
I =hI � 1 (no imperfection case), the problem becomes a

bifurcation problem in which a bifurcation (the onset of the sheet necking) corresponds to the point
where the determinant of the coe�cient matrix of the algebraic equation for _c1 and _c2 becomes zero.

The strains eL
11 and eL

22 outside the band corresponding to the onset of the sheet necking are the
localization strains. In the case of the conditions (37) and (38), e11 and e22 are the precise logarithmic
principal strains. By contrast, in the case of the conditions (37) and (40), e11 and e22 are not precise
logarithmic strain components, nor principal strains when the shear strain evolves outside the band. In
this case, the strains to be shown in the results are calculated as e11 �

�
D11 dt and e22 � re11: They are

used only as deformation measures for the purpose of comparison with the case of the conditions (37)
and (38).

A point on one of the forming limit diagrams (FLD's) to be shown in the following section is
obtained as follows: (i) calculating the localization strains, eL

11 and eL
22, for various values of the initial

band angle cI, (ii) ®nding the minimum value of the major localization strain eL
11, and (iii) de®ning the

minimum value of eL
11 and the corresponding eL

22 as the predicted forming limit strains, e�11 and e�22, to be
plotted on a FLD. The initial band angle corresponding to e�11 and e�22 is de®ned as the critical initial
band angle c�I : A whole forming limit diagram is obtained by repeating the same procedure for various
values of the strain rate ratio r: In the present study, it is assumed that the initial orthotropic angle yI

ranges from 08 to 908. Corresponding to this, we consider the values of cI ranging from 08 to 908 for
the cases of yI equal to 08 or 908, and from ÿ908 to 908 for the cases of yI being values other than 08 or
908.

4. Results

4.1. Material properties

The material considered in the present analyses is a cold-rolled low-carbon steel sheet (Kuwabara et
al., 1998a). Hardening characteristics and r-values assumed here are shown in Table 1. All the values of
material parameters for sa and the ra values were estimated by Kuwabara et al. (1998a). The r-values
are considered as material constants according to the ®ndings that these were not so sensitive to an
increase in plastic strain, at least within 10% strains (Kuwabara et al., 1998b). Although these
parameter values were estimated referring to the experimental data within 5% plastic strain, we will use
the same values as an extrapolation beyond this plastic strain range. For Hill's (1990) criterion, the
value of m is assumed to be 2.2 on the basis of a suggestion in Ref. Kuwabara et al. (1998a). For Barlat
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and Lian's (1989) criterion, M = 6 is selected following the work of Logan and Hosford (1980) which
was a basis of Barlat and Lian's (1989) criterion. Fig. 2 shows shapes of yield surfaces for two strain
levels under biaxial tension, with the Mises yield surface included as reference at both strain levels. Only
the yield surface shape according to Hill's (1948) criterion does not change with increasing plastic strain,
because it has been determined by the constant r-values. The shapes of the other three yield surfaces
change with increasing plastic deformation due to the di�erent hardening characteristics of s0, s90 and
sbi: It is clear that at the initial shapes of these three yield surfaces would be very similar to the Mises
yield surface (although the initial surfaces are not shown here), because the initial yield stresses, sI

0, s
I
90

and sI
bi, are almost the same with each other as shown in Table 1. It can be seen from Fig. 2 that for

ep � 0:03 the deformed yield surface shapes according to the di�erent criteria are close to each other,
except for Hill's (1948) criterion determined with the constant r-values. At the larger strain level
�ep � 0:3), the yield surfaces for Hill's (1990), Barlat and Lian's (1989) and Gotoh's (1977) criteria
evolve di�erently. Here, Hill's (1948) criterion, which does not change its shape, has come almost within
the di�erences between the other three criteria.

In the following calculations, the elastic constants are assumed to be E = 206 GPa and n � 0:3:

4.2. Di�erence between predictions based on the four yield criteria

Fig. 3 shows FLD's for the di�erent yield criteria, when the initial orthotropic axes coincide with the
reference Cartesian axes, i.e. yI � 08: The plastic spin coe�cient q in Eq. (10) is set to be zero for all the
calculations shown in Fig. 3. The e�ect of the plastic spin will be shown and discussed later. The value

Table 1

Hardening characteristics of cold-rolled low carbon steel

Tests s1a (MPa) e0 n ra

Uniaxial a � 08 165 0.0041 0.209 2.01

a � 22:58 167 0.0048 0.218 1.89

a � 458 174 0.0044 0.203 1.52

a � 908 170 0.0040 0.192 2.42

Equibiaxial 165 0.0040 0.260 ±

Fig. 2. Comparison of shapes of yield surfaces at small and large strain levels.
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of the imperfection, hb
I =hI, is assumed to be 0.999 in most of the calculations. This value of the

imperfection is considered to be in a realistic range and not too large compared to real metal products
(Azrin and Backofen, 1970). For Hill's (1990) criterion, results for other values of hb

I =hI are included in
Fig. 3, in order to illustrate the strong sensitivity to the imperfection level for r > 0: The bifurcation
analysis �hb

I =hI � 1� does not give any realistic result in the biaxial stretching range (i.e. r > 0� as already
known (e.g. Tvergaard, 1980).

The trends of FLD's for Hill's (1990) and Barlat and Lian's (1989) criteria are similar in Fig. 3, while
the FLD for Gotoh's (1977) criterion shows a signi®cant fall of the curve near the equibiaxial range. In
the result for Hill's (1948) criterion, a very little fall of the curve can be seen too, near r � 1: The trend
of a fall of FLD's near the equibiaxial stretching range has also been observed in some recent crystal
plasticity predictions (Wu et al., 1997, 1998). It is also noted that if we continue to draw the FLD's
beyond r � 1, i.e. for the range of r > 1, in Fig. 3, they will be asymmetric about the line of r � 1,
unlike isotropic cases. We will see later FLD's corresponding to this range as those for r < 1 with yI �
908 in Fig. 5.

Fig. 4(a) shows the relationships between the predicted critical initial band orientation, c�I , and the
imposed ratio of strain rate, r, corresponding to Fig. 3. The trend of the r vs. c�I relation predicted by
Gotoh's (1977) criterion, which shows a deviation of c�I from 08 in the range of 0:8 < r < 1, is similar
to the trend predicted by a crystal plasticity analysis (Wu et al., 1997; 1998). The c�I for Hill's (1948)
criterion shows a sudden jump from 08 to 908. This behavior is explained in Fig. 4(b), where curves of
the localization strain eL

11 versus the assumed initial band angle cI for Gotoh's (1977) and for Hill's
(1948) criteria are shown at nearly equibiaxial stretching, i.e. at r � 0:9 and 1.0. It is seen from the
®gure that in the case of Gotoh's (1977) criterion the bottom (i.e. �c�I , e�11�, ) of the curve (indicated by
circles) gradually moves to the ®nal point �c�I , e�11� � �708, 0:399� for r � 1:0: On the other hand, in the
case of Hill's (1948) criterion, there are two bottoms at cI � 08 and at 908, and their locations on the cI

axis do not change. At some point in between r � 0:9 and 1.0, the minimum value of eL
11 (i.e. e�11�

jumped from the bottom at cI � 08 to the bottom at cI � 908: Trends of curves of eL
11 versus cI for the

other two yield criteria are similar to that for Hill's (1948) criterion. But, jumping the point of the
minimum value of eL

11 from cI � 08 to 908 does not occur, i.e. the location of e�11 are ®xed at cI � 08

Fig. 3. Forming limit diagrams for four di�erent yield criteria. The initial orthotropic axes coincide with the reference Cartesian

coordinate system, i.e. yI � 08:
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until r � 1:0: It is noted that if isotropy is assumed the value of eL
11 at r � 1:0 is identical for all values

of cI:

4.3. E�ect of initial orientation of anisotropy

Fig. 5(a)±(d) show the e�ect of the initial orthotropic orientation, yI, on FLD's for the four di�erent
yield criteria. The boundary conditions (37) and (38) have been employed, i.e. L12 � 0: The plastic spin
coe�cient q is set to be zero again. The value of the geometrical imperfection, hb

I =hI, is assumed to be
0.999, and hereafter we will use this imperfection value only. The e�ect of the initial orthotropic

Fig. 4. Variation of critical initial band orientation c�I with ratio r of principal strains, corresponding to Fig. 3. (a) Critical band

orientation c�I versus ratio r of principal strains. (b) Localization strain eL
11 versus initial band orientation cI near biaxial stretch-

ing; circles indicate critical points.
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orientation on the predicted FLD di�ers much depending on the yield criterion employed, although all
four yield criteria are obtained by ®tting the same set of tensile test data. In the cases of Hill's (1948)
and Barlat and Lian's (1989) criteria, the FLD's for yI � 08 and 908 are very close to each other. On the
other hand, the corresponding curves di�er much in the cases of Hill's (1990) and Gotoh's (1977)
criteria. It is noted that in the case of Hill's (1990) criterion, the limit strains for yI � 908 are much
higher than those for yI � 08 in part of the range of r > 0, while a quite opposite tendency is observed
for Gotoh's (1977) criterion. This can be attributed to the local curvature of the yield surface. For
example, in the case of Gotoh's (1977) criterion, the yield surface curvature for the range of ŝ22 > ŝ11 is
much greater than that for ŝ11 > ŝ22 (Fig. 2). It is expected that this large curvature region plays a role
similar to that of a rounded vertex (Tvergaard, 1978) when yI � 908 and r > 0: It is interesting to note
that the results for Gotoh's (1977) criterion shown in Fig. 5(d) are very similar to results in Ref.
Hoferlin et al. (1998) for a low carbon mild steel, which were predicted with a texture- and

Fig. 5. Forming limit diagrams for three di�erent initial orthotropic orientations; hbI =hI � 0:999:
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microstructure-based constitutive model. In their model, the shape of yield surface was generated on the
basis of experimental crystallographic texture.

Consider in Fig. 5 the curves for yI � 08 and 908 in the vicinity of the line r � 1: If the curve for yI �
08 is followed up to r � 1, then continuation of this curve for values r > 1 corresponds to following the
curve for yI � 908 backwards with r decaying from the value one. This behavior is indicated most
clearly in Fig. 5(b) and (d), by the angle of incidence of the two curves with the line r � 1:

Fig. 6(a) shows the FLD's for yI � 458 for the four yield criteria, collected from Fig. 5(a)±(d). The
corresponding critical initial band orientation, c�I , vs. the imposed ratio of strain rate, r, are depicted in
Fig. 6(b). Di�erent trends of the c�I vs. r relation are observed depending on the yield criterion. In
particular, we notice a jump of c�I from ÿ208 to +208 at r � ÿ0:3 for Gotoh's criterion and large
deviations of c�I from 08 in the range of r > 0:2 for all the criteria.

4.4. E�ects of allowance of shear strain outside the imperfection band

Fig. 7(a)±(d) show FLD's for the two di�erent types of boundary conditions mentioned in Section 3,
i.e. for the conditions (37) combined with either Eqs. (38) or (40). Only for Gotoh's (1977) yield
criterion, results for three values, 22.58, 458 and 67.58, of the initial orthotropic angle yI are depicted.
For the other three yield criteria, only results for yI � 458 are shown. The forming limit strains e�11 and
e�22 are noticeably reduced by allowing of shear deformations along the x1-axis (i.e. L12 6�0), especially in
the range of r > 0: A similar e�ect of the two types of boundary condition has been seen for all the
yield criteria, although the di�erence is not equally pronounced in the four cases. The smallest di�erence
is found in Fig. 7(b), for Hill's (1990) criterion, while Gotoh's (1977) criterion in Fig. 7(c) shows the
largest di�erence. In the case of yI � 08 or 908, the two sets of boundary conditions produce identical
results due to orthotropic symmetries, as mentioned earlier.

4.5. E�ects of plastic spin

The signi®cance of the plastic spin concept in phenomenological plasticity theories for large strain

Fig. 6. (a) Forming limit diagrams for four di�erent yield criteria; yI � 458; hb
I =hI � 0:999: (b) critical band orientation c�I versus

ratio r of principal strains (corresponding to (a)).
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state has been widely recognized recently. When we adopt the plastic spin concept, two critical issues
usually arise as: (i) how to choose a functional form of the plastic spin from many mathematical
possibilities, and (ii) how to determine the coe�cient(s) included in the formulation. Very recently,
Dafalias (1998) pointed out that Eq. (10) has a fairly good potential to reproduce rather complicated
experimental observations for signi®cant changes in orientation of anisotropy during tensile
deformations (Kim and Yin, 1997). In particular, he explained the di�erent sense of rotation of
anisotropy observed in the experiments for di�erent directions of tension, as being related to the
di�erent sign of the shear strain rate component in reference to the principal stress axes, as derived by
writing Eq. (10) in component form on these axes, and using Hill's (1948) quadratic yield criterion to
compute Dp. In Kim and Yin's study, a cold rolled low carbon steel sheet was used, which is the same
kind of steel sheets also considered in the present paper. In a comparison with their experimental results,
Dafalias (1999) and we independently have found that the value q � ÿ100 gives a good reproduction of

Fig. 8. E�ect of plastic spin on FLD's; hbI =hI � 0:999; L12 � 0 outside the band.
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one of the experimental results in Ref. Kim and Yin (1997) when we adopt Hill's (1948) quadratic yield
criterion. On the basis of these ®ndings, we take here the value of q as ÿ100, and make a comparison
with predictions of the four yield criteria (even though the value q � ÿ100 was found only for one of
the criteria).

Fig. 8(a)±(d) show the e�ects of the plastic spin on FLD's for the four yield criteria. Results for three
orthotropic orientations, yI � 08, 22.58 and 458, with two values of the plastic spin coe�cient, q = 0 (no
plastic spin) or q � ÿ100 (the aforementioned value), are shown in each ®gure. The equivalent stress seq

in (10) is taken as Cs0, sbi, s0 and s0, respectively, for Hill's (1948, 1990), Barlat and Lian's (1989) and
Gotoh's (1977) criteria. The boundary conditions speci®ed by Eqs. (37) and (38), i.e. L12 � 0, have been
employed (no shear strain outside the band). In the case of Hill's (1948) criterion with yI � 08, the
di�erence between the results for q = 0 and ÿ100 are invisible. It is observed that the plastic spin
mainly reduces the limit strains in the range of r > 0, except for 0 < r < 0:4 for Gotoh's (1977) criterion
with yI � 22:58 or 458 and for Hill's (1948) criterion with yI � 08: Here, our attention is focused on the
portions where the signi®cant e�ects of plastic spin are observed. The typical portions are indicated by
the encircled numbers in Fig. 8. Fig. 9(a)±(c) show the evolution of the orthotropic orientations outside
and inside the band, y and yb, with increasing principal logarithmic strain e11, for the portions indicated
by the encircled numbers in Fig. 8. In the case of (Hill's (1948) with yI � 22:58, r � ÿ0:5), when the
plastic spin �q � ÿ100� is assumed, the orthotropic orientation y rather quickly changes from the initial
value (=22.58) to zero. This means that the orthotropic axis x̂1 tends to rotate towards the principal

Fig. 9. Relationships between principal strain e11 and orthotropic orientations y inside and outside the band for particular cases

where noticeable e�ect of plastic spin on FLD is observed; hbI =hI � 0:999; L12 � 0 outside the band.
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strain direction x1: This behavior is consistent with the experimental observations in Ref. Kim and Yin
(1997). Consequently, the limit strain in this case is almost equal to the case for yI � 08, as can be seen
in Fig. 8(a). By contrast, in the case of no plastic spin (q = 0), no rotation of the orthotropic axes
occurs outside the band, because the substructure spin o12 is equal to W12�� 0�, although the
orthotropic axes inside the band can rotate. However, in the cases of , the di�erences between y and
yb are quite small even at the localization point, both for q =0 and for q � ÿ100:

At the portions marked , , and in Fig. 8, signi®cant reductions of the limit strains are observed.
The curves of y and yb versus e11 for these cases show a rather large misorientation between the
orthotropic directions near the localization points, as can be observed in Fig. 9(a)±(c). The
misorientation between y and yb has a large e�ect on the occurrence of localization. In order to con®rm
this more clearly, several independent calculations have been carried out as discussed below.

All the calculations depicted in this paper have assumed the same initial orientations of orthotropy
inside and outside the band, i.e. yI � yb

I : However, we have tried to assume di�erent initial orientations

Fig. 10. E�ect of plastic spin on FLD's; hbI =hI � 0:999; L12 6�0 outside the band.
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of orthotropy, i.e. yI 6�yb
I : As an example, for Hill's (1948) criterion, we assume yI � 108 and yb

I � 6:68
(these values almost correspond to the values found at the end of the computations for the case of q �
ÿ100 in Fig. 9(b), ) with r � 0, cI � 08 and q � 0: In this case, the localization strain, eL

11 � 0:172, is
obtained, and the ®nal value of yb is 6.48. On the other hand, if yI � yb

I � 108 is assumed, with all other
conditions the same as before, eL

11 � 0:188 is obtained. From these simple examples, we understand that
misorientations of the orthotropic directions inside and outside the band can have a large e�ect on the
occurrence of localization. In the presence of the plastic spin, the misorientation may evolve a great deal
even from the standard condition y1 � yb

I , as was seen in Fig. 9, in particular Fig. 9(c).
In the case of Gotoh's (1977) criterion, the e�ect of plastic spin seems to be unrealistically large for

r > 0:4: In this range of r, Gotoh's (1977) criterion predicts signi®cantly smaller limit strains in
comparison to the predictions of the other three criteria. This corresponds to the fact that the yield
surface shape has been distorted more, as was seen in Fig. 2. The plastic spin employed here measures
the noncoaxiality between the stress sss and the normal direction Np to the yield surface. The more the
yield surface shape is distorted, the more the sss and Np tend to become noncoaxial. It seems that the
value q � ÿ100 is too large for the present case of Gotoh's (1977) criterion. Using the experimental data
provided by Kim and Yin (1997), calibrations of the value of plastic spin coe�cients for Gotoh's (1977)
criterion could not be completed, because of a lack of data required for determining all the orthotropic
coe�cients A1±A9. According to the authors' knowledge, Kim and Yin's data is at present the only
experimental evidence for the orientational evolution of anisotropy. It is also noted that, in Fig. 9(a),
the curves for Hill's (1990) criterion with q � ÿ100 (the case ) ®rst tend to rotate toward y � 08 and
then toward y � 908: This behavior can be attributed to the evolution of anisotropy, i.e. in this yield
criterion, the orthotropic coe�cients are not constants, but evolve with increasing plastic deformation.

In Fig. 10(a)±(d), the e�ects of plastic spin are illustrated for the cases where shear straining �L12 6�0�
is allowed for outside the band. In the range of negative values of r, the e�ects of plastic spin becomes
slightly smaller. However, basically the e�ects seen in Fig. 10 are similar to those observed in Fig. 8.

5. Discussion

In M±K-model studies of necking in thin sheets, it is well known that the predictions show a strong
in¯uence of the yield criterion applied, and this is also found in the present investigation by comparison
of four di�erent anisotropic yield criteria. However, it is interesting to note here that the rather large
di�erences are present even though all four yield criteria are ®tted to approximately agree with the same
set of experimental data. Another well known fact from previous M±K-model studies of sheet necking is
that the predictions are strongly sensitive to the imperfection level, and this is illustrated in Fig. 3 for
one of the four anisotropic yield criteria, but is otherwise not discussed here.

The non-symmetry of the forming limit diagrams with respect to the line r � 1 illustrated in Fig. 5
has usually not been found in M±K-model studies based on phenomenological plasticity models, even
when anisotropic plasticity is accounted for. The same is true for the changes in band orientation near
r � 1, where in fact several authors have assumed c� � 08 a priori. However, with anisotropic plasticity,
there is no material symmetry to guarantee that the change from c� � 08 to c� � 908 occurs exactly at
r � 1, and in fact a more gradual change is found in Fig. 4(a). In the context of crystal plasticity this
nonsymmetric behavior near r � 1 has been nicely illustrated and discussed by Wu et al. (1997, 1998).

The analyses for tension in directions inclined to the initial orthotropic axes of the anisotropy have
shown that the predicted localization strains are quite sensitive to such deviations from the usual
assumptions in M±K-model analyses. This sensitivity is di�erent for the di�erent anisotropic yield
criteria (Fig. 5), and it cannot be expected that predictions for an intermediate angle as yI � 458 are in
between those for 08 and 908. As would be expected, the deviations from the usual critical band
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orientation, c� � 08, near r � 1 are much more pronounced when the tensile directions are inclined to
the initial orthotropic axes (Fig. 6(b)). For these types of loading it is also important to note the
signi®cant di�erences between the localization strains predicted when the conditions outside the band
enforce zero shear strains, as compared to the situation where a shear strain is allowed for in order to
enforce zero shear stress (Fig. 7). The results of these two sets of boundary conditions coincide when the
tensile directions are along the orthotropic axes.

The e�ect of plastic spin has been incorporated in a few analyses here, as it has been shown in
previous investigations that this improves the representation of experimentally observed changes in
anisotropy orientation. Therefore, the e�ect of plastic spin is of most interest in the cases where the
tensile directions are inclined to the initial orthotropic axes, so that the anisotropy rotates outside the
band, as well as inside the band. It has been found (Figs. 8 and 10) that a realistic amount of plastic
spin can result in localization strains that di�er signi®cantly from those predicted in the absence of
plastic spin, and this is found for both types of boundary conditions, prescribing either zero shear strain
or zero shear stress outside the band.
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